Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychologia ; 180: 108465, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36586718

RESUMO

BACKGROUND AND OBJECTIVES: Syntactic competence relies on a left-lateralized network converging on hubs in inferior-frontal and posterior-temporal cortices. We address the question whether anodal transcranial direct current stimulation (a-tDCS) over these hubs can modulate comprehension of sentences, whose syntactic complexity systematically varied along the factors embedding depths and canonicity. Semantic content and length of the sentences were kept identical and forced choice picture matching was required after the full sentence had been presented. METHODS: We used a single-blind, within-subject, sham-controlled design, applying a-tDCS targeting left posterior tempo-parietal (TP) and left inferior frontal cortex (FC). Stimulation sites were determined by individual neuro-navigation. 20 participants were included of whom 19 entered the analysis. Results were analysed using (generalized) mixed models. In a pilot-experiment in another group of 20 participants we validated the manipulation of syntactic complexity by the two factors embedding depth and argument-order. RESULTS: Reaction times increased and accuracy decreased with higher embedding depth and non-canonical argument order in both experiments. Notably a-tDCS over TP enhanced sentence-to-picture matching, while FC-stimulation showed no consistent effect. Moreover, the analysis disclosed a session effect, indicating improvements of task performance especially regarding speed. CONCLUSIONS: We conclude that the posterior 'hub' of the neuronal network affording syntactic analysis represents a 'bottleneck', likely due to working-memory capacity and the challenges of mapping semantic to syntactic information allowing for role assignment. While this does not challenge the role of left inferior-frontal cortex for syntax processing and novel-grammar learning, the application of highly established syntactic rules during sentence comprehension may be considered optimized, thus not augmentable by a-tDCS in the uncompromised network. SIGNIFICANCE STATEMENT: Anodal transcranial direct current stimulation (a-tDCS) over left temporo-parietal cortex enhances comprehension of complex sentences in uncompromised young speakers. Since a-tDCS over left frontal cortex did not elicit any change, the 'bottleneck' for the understanding of complex sentences seems to be the posterior, temporo-parietal rather than the anterior inferior-frontal 'hub' of language processing. Regarding the attested role of inferior-frontal cortex in syntax processing, we suggest that its function is optimized in competent young speakers, preventing further enhancement by (facilitatory) tDCS. Results shed light on the functional anatomy of syntax processing during sentence comprehension; moreover, they open perspectives for research in the lesioned language network of people with syntactic deficits due to aphasia.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Método Simples-Cego , Compreensão/fisiologia , Imageamento por Ressonância Magnética , Idioma , Lobo Frontal/fisiologia , Mapeamento Encefálico
2.
Brain ; 142(10): 3217-3229, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31560064

RESUMO

The generation of hierarchical structures is central to language, music and complex action. Understanding this capacity and its potential impairments requires mapping its underlying cognitive processes to the respective neuronal underpinnings. In language, left inferior frontal gyrus and left posterior temporal cortex (superior temporal sulcus/middle temporal gyrus) are considered hubs for syntactic processing. However, it is unclear whether these regions support computations specific to language or more generally support analyses of hierarchical structure. Here, we address this issue by investigating hierarchical processing in a non-linguistic task. We test the ability to represent recursive hierarchical embedding in the visual domain by contrasting a recursion task with an iteration task. The recursion task requires participants to correctly identify continuations of a hierarchy generating procedure, while the iteration task applies a serial procedure that does not generate new hierarchical levels. In a lesion-based approach, we asked 44 patients with left hemispheric chronic brain lesion to perform recursion and iteration tasks. We modelled accuracies and response times with a drift diffusion model and for each participant obtained parametric estimates for the velocity of information accumulation (drift rates) and for the amount of information accumulated before a decision (boundary separation). We then used these estimates in lesion-behaviour analyses to investigate how brain lesions affect specific aspects of recursive hierarchical embedding. We found that lesions in the posterior temporal cortex decreased drift rate in recursive hierarchical embedding, suggesting an impaired process of rule extraction from recursive structures. Moreover, lesions in inferior temporal gyrus decreased boundary separation. The latter finding does not survive conservative correction but suggests a shift in the decision criterion. As patients also participated in a grammar comprehension experiment, we performed explorative correlation-analyses and found that visual and linguistic recursive hierarchical embedding accuracies are correlated when the latter is instantiated as sentences with two nested embedding levels. While the roles of the inferior temporal gyrus and posterior temporal cortex in linguistic processes are well established, here we show that posterior temporal cortex lesions slow information accumulation (drift rate) in the visual domain. This suggests that posterior temporal cortex is essential to acquire the (knowledge) representations necessary to parse recursive hierarchical embedding in visual structures, a finding mimicking language acquisition in young children. On the contrary, inferior frontal gyrus lesions seem to affect recursive hierarchical embedding processing by interfering with more general cognitive control (boundary separation). This interesting separation of roles, rooted on a domain-general taxonomy, raises the question of whether such cognitive framing is also applicable to other domains.


Assuntos
Cognição/fisiologia , Compreensão/fisiologia , Córtex Pré-Frontal/fisiologia , Adulto , Idoso , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Tomada de Decisões , Feminino , Humanos , Idioma , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Música , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia
3.
PLoS One ; 11(12): e0166647, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27959914

RESUMO

Theories of embodied cognition propose that perception is shaped by sensory stimuli and by the actions of the organism. Following sensorimotor contingency theory, the mastery of lawful relations between own behavior and resulting changes in sensory signals, called sensorimotor contingencies, is constitutive of conscious perception. Sensorimotor contingency theory predicts that, after training, knowledge relating to new sensorimotor contingencies develops, leading to changes in the activation of sensorimotor systems, and concomitant changes in perception. In the present study, we spell out this hypothesis in detail and investigate whether it is possible to learn new sensorimotor contingencies by sensory augmentation. Specifically, we designed an fMRI compatible sensory augmentation device, the feelSpace belt, which gives orientation information about the direction of magnetic north via vibrotactile stimulation on the waist of participants. In a longitudinal study, participants trained with this belt for seven weeks in natural environment. Our EEG results indicate that training with the belt leads to changes in sleep architecture early in the training phase, compatible with the consolidation of procedural learning as well as increased sensorimotor processing and motor programming. The fMRI results suggest that training entails activity in sensory as well as higher motor centers and brain areas known to be involved in navigation. These neural changes are accompanied with changes in how space and the belt signal are perceived, as well as with increased trust in navigational ability. Thus, our data on physiological processes and subjective experiences are compatible with the hypothesis that new sensorimotor contingencies can be acquired using sensory augmentation.


Assuntos
Estado de Consciência , Aprendizagem , Córtex Sensório-Motor/fisiologia , Percepção Espacial , Adulto , Cognição , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Masculino , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...